Where did the Australian
rock band AC/DC get their name from? Why, Alternating Current and Direct
Current, of course! Both AC and DC describe types of current flow in a circuit.
In direct current (DC), the electric charge (current) only flows in one direction.
Electric charge in alternating current (AC), on the other hand, changes
direction periodically. The voltage in AC circuits also periodically reverses
because the current changes direction.
Most of the digital electronics that you build will use DC. However, it is important to understand some AC concepts. Most homes are wired for AC, so if you plan to connect your Tardis music box project to an outlet, you will need to convert AC to DC. AC also has some useful properties, such as being able to convert voltage levels with a single component (a transformer), which is why AC was chosen as the primary means to transmit electricity over long distances.
What You Will Learn
·
Different ways to generate AC and DC
·
Some examples of AC and DC applications
Alternating current describes the flow of charge that
changes direction periodically. As a result, the voltage level also reverses
along with the current. AC is used to deliver power to houses, office
buildings, etc.
Generating AC
AC can be produced using a device called an alternator. This device is a special type of electrical generator designed to produce alternating current.
A loop of wire is spun inside of a magnetic field, which induces a current along the wire. The rotation of the wire can come from any number of means: a wind turbine, a steam turbine, flowing water, and so on. Because the wire spins and enters a different magnetic polarity periodically, the voltage and current alternates on the wire.
Generating AC can be compared to our previous water
analogy:
To generate AC in a set of water pipes, we connect a
mechanical crank to a piston that moves water in the pipes back and forth (our
"alternating" current). Notice that the pinched section of pipe still
provides resistance to the flow of water regardless of the direction of flow.
Waveforms
AC can come in a number of forms, as long as the
voltage and current are alternating. If we hook up an oscilloscope to a circuit
with AC and plot its voltage over time, we might see a number of different
waveforms. The most common type of AC is the sine wave. The AC in most homes
and offices have an oscillating voltage that produces a sine wave.
Other
common forms of AC include the square wave and the triangle wave:
Square
waves are often used in digital and switching electronics to test their
operation.
Describing a Sine Wave
We often want to describe an AC waveform in
mathematical terms. For this example, we will use the common sine wave. There
are three parts to a sine wave: amplitude, frequency, and phase.
Looking at just voltage, we can describe a sine wave as the mathematical function:
V(t)
is our voltage as a function of time, which means that our voltage changes as
time changes. The equation to the right of the equals sign describes how the
voltage changes over time.
VP is the amplitude. This describes the maximum voltage that our sine wave can reach in either direction, meaning that our voltage can be +VP volts, -VP volts, or somewhere in between.
The sin() function indicates that our voltage will be in the form of a periodic sine wave, which is a smooth oscillation around 0V.
2π is a constant that converts the freqency from cycles (in hertz) to angular frequnecy (radians per second).
f describes the frequency of the sine wave. This is given in the form of hertz or units per second. The frequency tells how many times a particular wave form (in this case, one cycle of our sine wave - a rise and a fall) occurs within one second.
t is our independent variable: time (measured in seconds). As time varies, our waveform varies.
φ describes the phase of the sine wave. Phase is a measure of how shifted the waveform is with respect to time. It is often given as a number between 0 and 360 and measured in degrees. Because of the periodic nature of the sine wave, if the wave form is shifted by 360° it becomes the same waveform again, as if it was shifted by 0°. For simplicity, we sill assume that phase is 0° for the rest of this tutorial.
We can turn to our trusty outlet for a good example of how an AC waveform works. In the United States, the power provided to our homes is AC with about 170V zero-to-peak (amplitude) and 60Hz (frequency). We can plug these numbers into our formula to get the equation (remember that we are assuming our phase is 0):
We
can use our handy graphing calculator to graph this equation. If no graphing
calculator is available we can use a free online graphing program like Desmos
(Note that you might have to use 'y' instead of 'v' in the equation to see the graph).
Notice
that, as we predicted, the voltage rise up to 170V and down to -170V
periodically. Additionally, 60 cycles of the sine wave occurs every second. If
we were to measure the voltage in our outlets with an oscilloscope, this is
what we would see (WARNING: do not attempt to measure the voltage in an outlet
with an oscilloscope! This will likely damage the equipment).
NOTE: You might have heard that AC voltage in the US is 120V. This is also correct. How? When talking about AC (since the voltage changes constantly), it is often easier to use an average or mean. To accomplish that, we use a method called "Root mean squared." (RMS). It is often helpful to use the RMS value for AC when you want to calculate electrical power. Even though, in our example, we had the voltage varying from -170V to 170V, the root mean square is 120V RMS.
Applications
Home and office outlets are almost always AC. This is because generating and transporting AC across long distances is relatively easy. At high voltages (over 110kV), less energy is lost in electrical power transmission. Higher voltages mean lower currents, and lower currents mean less heat generated in the power line due to resistance. AC can be converted to and from high voltages easily using transformers.
AC is also capable of powering electric motors. Motors and generators are the exact same device, but motors convert electrical energy into mechanical energy (if the shaft on a motor is spun, a voltage is generated at the terminals!). This is useful for many large appliances like dishwashers, refrigerators, and so on, which run on AC.
Direct
Current (DC)
Direct current is a bit easier to understand than alternating current. Rather than oscillating back and forth, DC provides a constant voltage or current.
Generating
DC
DC
can be generated in a number of ways:
· An AC generator equipped with a device
called a "commutator" can produce direct current
· Use of a device called a
"rectifier" that converts AC to DC
· Batteries provide DC, which is generated
from a chemical reaction inside of the battery
Using our water analogy again, DC is similar to a tank
of water with a hose at the end.
The tank can only push
water one way: out the hose. Similar to our DC-producing battery, once the tank
is empty, water no longer flows through the pipes.
Describing DC
DC is defined as the
"unidirectional" flow of current; current only flows in one
direction. Voltage and current can vary over time so long as the direction of
flow does not change. To simplify things, we will assume that voltage is a
constant. For example, we assume that a AA battery provides 1.5V, which can be
described in mathematical terms as:
If we plot this over time, we see a constant voltage:
What does this mean? It
means that we can count on most DC sources to provide a constant voltage over
time. In reality, a battery will slowly lose its charge, meaning that the
voltage will drop as the battery is used. For most purposes, we can assume that
the voltage is constant.
Applications
Almost all electronics
projects and parts for sale on SparkFun run on DC. Everything that runs off of
a battery, plugs in to the wall with an AC adapter, or uses a USB cable for
power relies on DC. Examples of DC electronics include:
·
Cell phones
·
The lilyPad-based D&D Dice Gauntlet
·
Flat-screen TVs (AC goes into the TV,
which is converted to DC)
·
Flashlights
Hybrid and electric
vehicles
Tidak ada komentar:
Posting Komentar