Kamis, 13 Juli 2023

PRAKTEK KERJA LAPANGAN DI PT. PLN INDONESIA POWER BALI PGU UNIT PLTG PEMARON


PT. PLN Indonesia Power Bali PGU Unit PLTG Pemaron merupakan perusahaan relokasi dari pembangkitan Priok yang ditujukan untuk memenuhi kebutuhan listrik di Provinsi Bali, serta memperbaiki kualitas tegangan listrik Bali bagian utara dan timur. PT. PLN Indonesia Power Bali PGU Unit PLTG Pemaron terletak di jalan Singaraja-Seririt KM 6, Desa Pemaron, Kecamatan Buleleng, Kabupaten Buleleng, Provinsi Bali. Di PT. PLN Indonesia Power Bali PGU Unit PLTG Pemaron terdapat berbagai macam unit mesin aktif dengan kondisi prima yang siap beroperasi setiap saat jika dibutuhkan, salah satunya yaitu mesin Demineralizer Plant. Demineralizer plant adalah sebuah  sistem pengolahan lanjutan dari pre-water treatment plant untuk menghasilkan air  bebas mineral, sehingga memenuhi syarat sebagai air umpan boiler yang akan di ubah menjadi steam. Dengan kata lain, Demineralizer Plant berfungsi untuk menghilangkan garam-garam terlarut di dalam air. Air de-mineral juga dikenal sebagai air de-ionisasi, air yang ion mineralnya dihilangkan. Ion mineral seperti kation natrium, kalsium, besi, tembaga, serta anion seperti klorida, sulfat, nitrat dan lain-lain adalah ion umum yang ada dalam air. De-ionisasi adalah proses fisik yang menggunakan resin penukar ion yang diproduksi secara khusus yang menyediakan tempat pertukaran ion untuk penggantian garam mineral dalam air dengan air yang membentuk ion H+ dan OH-. Karena sebagian besar penyebab air kotor adalah garam terlarut, de-ionisasi menghasilkan air dengan kemurnian tinggi yang umumnya mirip dengan air suling dan proses ini cepat dan tanpa penumpukan kerak. Teknologi demineralisasi adalah proses yang telah terbukti untuk pengolahan air. Sistem air pada Demineralizer Plant menghasilkan air bebas mineral dengan beroperasi berdasarkan prinsip pertukaran ion, degasifikasi dan pemolesan. Sistem air de-mineral menemukan aplikasi luas di bidang uap, listrik, proses dan pendinginan. Di kawasan industri, sistem pengukuran jumlah debit air yang digunakan pada Demineralizer Plant sudah berjalan secara terotomatisasi. Sedangkan sistem pengukuran debit air pada Demineralizer Plant PLTG Pemaron masih dilakukan secara manual.

Berdasarkan gambaran umum instasi PT. PLN Indonesia Power Bali PGU Unit PLTG Pemaron ditemukan beberapa permasalahan yang berkaitan dengan sistem pengukuran Demineralizer Plant. Permasalahan yang dihadapi diantaranya, sistem pengukuran debit air pada Demineralizer Plant PLTG Pemaron masih menggunakan metode manual dan data pengukuran yang dihasilkan kurang akurat, sehingga operator yang bertugas mengalami kesulitan pada saat memonitoring dan rekapitulasi data.

Dari pemaparan permasalahan yang telah dijelaskan diatas, solusi yang diberikan untuk memecahkan masalah tersebut diantaranya, pengembangan proyek sistem pengukuran debit air berbasis Aurdino Mega pada Demineralizer Plant PLTG Pemaron. Aspek yang dikembangkan yakni pada sistem pengukuran yang menggunakan sistem kontrol otomatis dengan menggunakan mikrokontroler jenis Aurdino Mega 2560. Sistem pengukuran debit air ini dilakukan secara real-time. Dengan dikembangkannya pengukuran debit air secara otomatis ini, diharapkan dapat mempermudah operator yang bertugas dalam melakukan pendataan debit air dan hasil data pengukuran yang digunakan lebih akurat. Untuk pengembangan proyek sistem pengukuran debit air berbasis Aurdino Mega pada Demineralizer Plant PLTG Pemaron ini telah didiskusikan secara aktif kepada mentor magang dan telah dilakukan.

Analisis Kegiatan 

Selama melaksanakan kegiatan PKL di PT. PLN Indonesia Power Bali PGU Unit PLTG Pemaron yang berlangsung dari tanggal 20 Februari hingga 07 Juli 2023 penulis ditempatkan di divisi Teknik dan Dokumentasi serta beberapa kegiatan lainnya juga. Dibawah ini adalah tugas-tugas dan kegiatan penulis yang selama menjalani kegiatan PKL di PT. PLN Indonesia Power Bali PGU Unit PLTG Pemaron.



Membantu melakukan perawatan alat pada Generator Panel
    Dalam kegitan ini penulis diberikan tugas untuk melakukan perawatan ringan pada mesin generator guna agar mensin tetap dapat beroperasi secara normal dan tetap optimal.

Maintenance Generator


Membantu dalam melakukan perawatan baterai 
    Dalam kegiatan ini penulis diberikan tugas untuk melakukan perawatan ringan pada baterai serta melakukan pengecekan voltase pada masing masing baterai guna untuk mengetahui beterai masih layak guna dan tidak serta agar baterai tetap awet.

Maintenance batery

Membantu dalam melakukan perbaikan Mesin Kompresor
Dalam kegiatan ini penulis diberikan tugas untuk membantu unit helper dalam perbaikan mesin kompresor guna agar mesin kompresor bisa beroperasi dengan normal kembali.
Repair Compresor Machine

Membantu dalam pengecekan kerusakan pada mesin Generator
    Dalam kegiatan ini penulis membantu dalam melakukan pengecekan kerusakan yang terjadi di mesin generator yang dimana pengecekan dilakukan melalui ruangan Monitoring yang sudah disediakan.
Monitoring System Operating Machine


Membantu dalam pemasangan lampu Mercesuar di Mooring Buoy

    Dalam kegiatan ini penulis membantu dalam melakukan pemasangan lampu Mercesuar di Mooring Buoy guna untuk mooring buoy berjalan optimal kembali dan landasan dapat terlihat dengan adanya lampu mercesuar.

Repair Moouring Buoy


Membantu dalam menyelesaikan Projek PLTG debit air Demineralizer Plant
    Dalam kegiatan ini penulis membantu untuk menyelesaikan projek pengukuran debit air pada Demineralizer Plant PLTG yang dimana menggunakan microkontroler (Arduino Mega) guna untuk memudahkan operator untuk mengecek debit air.


Project Demineralizer Plant PLTG
















  

Minggu, 09 Mei 2021

Questions about Series and Parallel

 

What’s a Circuit, Series and Parallel (ElectroBOOM101–005) by ElectroBOOM


Questions about Series and Parallel in video ElectroBOOM:

1.      Why are the lights in a house usually installed in parallel if the number of lights is more than one?

2.      How can a short circuit occur?  and what causes sparks when short as in the video

3.      How do nodes (connections between components) affect when using ordinary wire in the circuit?

4.      Why the battery is getting low so fast if it runs on the series lamp circuit?

5.      Second example when the circuit connects components between two nodes, there is no series and parallel connection. What caused that?

6.      why taking into account the loads that will be installed in series and parallel circuits is very important?

7.      what are the advantages and disadvantages of parallel circuits and series circuits?

8.      why the load series circuit will be weaker in operation, for example the lamp, the lamp in the series circuit will glow dim, what is the cause?

9.      what causes magnetic field in parallel circuit?

10.  Can the series circuit not be properly connected in series? Like what for example?

The video of this questions can be watched in https://youtu.be/AMXWm_bnsTE


Selasa, 06 April 2021

SERIES AND PARALLEL CIRCUIT EXPLANATION ON THE LAMP

 Series Series

               A series circuit is an electrical circuit whose components are arranged in a row through only one electric current. An example is a circuit that has two resistors, but there is only one wire line to conduct electricity as shown below. As well as a series circuit is a circuit in which there is only one path where the electric current flows from the source of the electric current. In a series, all lights are in sequence. In a series, if one lamp is turned off, the electricity will stop and all the lights will also turn off. This is because the circuit is not closed and electric current cannot flow.

            The advantage of a series circuit is the large amount of electric current that is not divided. However, the voltage or current is divided so that the lights in the series circuit are dimmer.

            The advantage of a series circuit is the large amount of electric current that is not divided. However, the voltage or current is divided so that the lights in the series circuit are dimmer.

In a series circuit, the electric current that flows is the same for each element and is formulated by:

The total resistance of the resistor in a series circuit is the sum of each resistance which is formulated by:


1. Overload of series

The advantages of the series are as follows.

  •          The number of conducting cables needed in the series circuit is less or saves cables.
  •          Lower installation costs.
  •          Even though the resistance on each load is not the same, the load still passes the same current.

2. Lack of series

The shortcomings of the series are as follows.

  •          If one load breaks or goes out, the other load will also go out.
  •          Lights that are connected in series cannot light up at the same time. This is because the voltage in each lamp varies, depending on the amount of resistance.

 

Parallel circuit

               A parallel circuit is an electrical circuit whose components are arranged parallel where there is more than one electric path (branched) in parallel. An example is a circuit that has two resistors where there is one cable line for each resistor as shown below. As well as parallel circuits are circuits arranged in branches, by having more than one path through which electric current flows from the source of the electric current. As a result, since an electric current has more than one path taken, the circuit can still function if one path is interrupted or turned off.

            Parallel circuits have the same voltage between the branches so that the lights in the parallel circuit are brighter. However, the current is different

           In accordance with Kirchoff's Law 1, the incoming electric current must be the same as the current out. So that in a parallel circuit the amount of current before entering the branch is the same as the current after leaving the branch and is formulated as:

              In accordance with Ohm's Law, the total resistance of the resistor in a parallel circuit is the sum of the inverse resistance of each component and is formulated by:

1. The advantages of parallel circuits

The advantages of parallel circuits are as follows.

  •          All lights connected in parallel will light up equally.
  •          If one lamp goes out, the other lamp will not be affected.

2. Weaknesses of parallel circuits

The weaknesses of parallel circuits are as follows.

  •          More cables are required, so the cost required is greater than the installation of a series circuit.
  •        The amount of current flowing in each load is not the same, depending on the amount of resistance on the load.

Minggu, 07 Maret 2021

Alternating Current (AC) and Direct Current (DC)

    Where did the Australian rock band AC/DC get their name from? Why, Alternating Current and Direct Current, of course! Both AC and DC describe types of current flow in a circuit. In direct current (DC), the electric charge (current) only flows in one direction. Electric charge in alternating current (AC), on the other hand, changes direction periodically. The voltage in AC circuits also periodically reverses because the current changes direction.

    Most of the digital electronics that you build will use DC. However, it is important to understand some AC concepts. Most homes are wired for AC, so if you plan to connect your Tardis music box project to an outlet, you will need to convert AC to DC. AC also has some useful properties, such as being able to convert voltage levels with a single component (a transformer), which is why AC was chosen as the primary means to transmit electricity over long distances.

What You Will Learn

·        The history behind AC and DC

·         Different ways to generate AC and DC

·         Some examples of AC and DC applications


 Alternating Current (AC)

Alternating current describes the flow of charge that changes direction periodically. As a result, the voltage level also reverses along with the current. AC is used to deliver power to houses, office buildings, etc.

Generating AC

    AC can be produced using a device called an alternator. This device is a special type of electrical generator designed to produce alternating current.

    A loop of wire is spun inside of a magnetic field, which induces a current along the wire. The rotation of the wire can come from any number of means: a wind turbine, a steam turbine, flowing water, and so on. Because the wire spins and enters a different magnetic polarity periodically, the voltage and current alternates on the wire.

 

Generating AC can be compared to our previous water analogy:


To generate AC in a set of water pipes, we connect a mechanical crank to a piston that moves water in the pipes back and forth (our "alternating" current). Notice that the pinched section of pipe still provides resistance to the flow of water regardless of the direction of flow.

 

Waveforms

AC can come in a number of forms, as long as the voltage and current are alternating. If we hook up an oscilloscope to a circuit with AC and plot its voltage over time, we might see a number of different waveforms. The most common type of AC is the sine wave. The AC in most homes and offices have an oscillating voltage that produces a sine wave.


Other common forms of AC include the square wave and the triangle wave:


Square waves are often used in digital and switching electronics to test their operation.




    Triangle waves are found in sound synthesis and are useful for testing linear electronics like amplifiers.

Describing a Sine Wave

We often want to describe an AC waveform in mathematical terms. For this example, we will use the common sine wave. There are three parts to a sine wave: amplitude, frequency, and phase.

 Looking at just voltage, we can describe a sine wave as the mathematical function:

V(t) is our voltage as a function of time, which means that our voltage changes as time changes. The equation to the right of the equals sign describes how the voltage changes over time.

 VP is the amplitude. This describes the maximum voltage that our sine wave can reach in either direction, meaning that our voltage can be +VP volts, -VP volts, or somewhere in between.

The sin() function indicates that our voltage will be in the form of a periodic sine wave, which is a smooth oscillation around 0V.

2π is a constant that converts the freqency from cycles (in hertz) to angular frequnecy (radians per second).

f describes the frequency of the sine wave. This is given in the form of hertz or units per second. The frequency tells how many times a particular wave form (in this case, one cycle of our sine wave - a rise and a fall) occurs within one second.

t is our independent variable: time (measured in seconds). As time varies, our waveform varies.

φ describes the phase of the sine wave. Phase is a measure of how shifted the waveform is with respect to time. It is often given as a number between 0 and 360 and measured in degrees. Because of the periodic nature of the sine wave, if the wave form is shifted by 360° it becomes the same waveform again, as if it was shifted by 0°. For simplicity, we sill assume that phase is 0° for the rest of this tutorial.

    We can turn to our trusty outlet for a good example of how an AC waveform works. In the United States, the power provided to our homes is AC with about 170V zero-to-peak (amplitude) and 60Hz (frequency). We can plug these numbers into our formula to get the equation (remember that we are assuming our phase is 0):


    We can use our handy graphing calculator to graph this equation. If no graphing calculator is available we can use a free online graphing program like Desmos (Note that you might have to use 'y' instead of 'v' in the equation to see the graph).


    Notice that, as we predicted, the voltage rise up to 170V and down to -170V periodically. Additionally, 60 cycles of the sine wave occurs every second. If we were to measure the voltage in our outlets with an oscilloscope, this is what we would see (WARNING: do not attempt to measure the voltage in an outlet with an oscilloscope! This will likely damage the equipment).

NOTE: You might have heard that AC voltage in the US is 120V. This is also correct. How? When talking about AC (since the voltage changes constantly), it is often easier to use an average or mean. To accomplish that, we use a method called "Root mean squared." (RMS). It is often helpful to use the RMS value for AC when you want to calculate electrical power. Even though, in our example, we had the voltage varying from -170V to 170V, the root mean square is 120V RMS.

Applications

    Home and office outlets are almost always AC. This is because generating and transporting AC across long distances is relatively easy. At high voltages (over 110kV), less energy is lost in electrical power transmission. Higher voltages mean lower currents, and lower currents mean less heat generated in the power line due to resistance. AC can be converted to and from high voltages easily using transformers.

AC is also capable of powering electric motors. Motors and generators are the exact same device, but motors convert electrical energy into mechanical energy (if the shaft on a motor is spun, a voltage is generated at the terminals!). This is useful for many large appliances like dishwashers, refrigerators, and so on, which run on AC.

Direct Current (DC)

Direct current is a bit easier to understand than alternating current. Rather than oscillating back and forth, DC provides a constant voltage or current.

Generating DC

DC can be generated in a number of ways:

·            An AC generator equipped with a device called a "commutator" can produce direct current

·           Use of a device called a "rectifier" that converts AC to DC

·            Batteries provide DC, which is generated from a chemical reaction inside of the battery

Using our water analogy again, DC is similar to a tank of water with a hose at the end.


The tank can only push water one way: out the hose. Similar to our DC-producing battery, once the tank is empty, water no longer flows through the pipes.

 Describing DC

    DC is defined as the "unidirectional" flow of current; current only flows in one direction. Voltage and current can vary over time so long as the direction of flow does not change. To simplify things, we will assume that voltage is a constant. For example, we assume that a AA battery provides 1.5V, which can be described in mathematical terms as:


If we plot this over time, we see a constant voltage:


What does this mean? It means that we can count on most DC sources to provide a constant voltage over time. In reality, a battery will slowly lose its charge, meaning that the voltage will drop as the battery is used. For most purposes, we can assume that the voltage is constant.

 Applications

    Almost all electronics projects and parts for sale on SparkFun run on DC. Everything that runs off of a battery, plugs in to the wall with an AC adapter, or uses a USB cable for power relies on DC. Examples of DC electronics include:

·             Cell phones

·             The lilyPad-based D&D Dice Gauntlet

·             Flat-screen TVs (AC goes into the TV, which is converted to DC)

·             Flashlights

    Hybrid and electric vehicles


PRAKTEK KERJA LAPANGAN DI PT. PLN INDONESIA POWER BALI PGU UNIT PLTG PEMARON

PT. PLN Indonesia Power Bali PGU Unit PLTG Pemaron merupakan perusahaan relokasi dari pembangkitan Priok yang ditujukan untuk memenuhi kebut...